CAS NO.:57-27-2 Morphine C17H19NO3 Recreational Club Clinical General anesthetics;Strong painkiller;Analgesic;Elixir

Morphine is a pain medication of the opiate variety which is found naturally in a number of plants and animals.



Detail:

        Morphine is a pain medication of the opiate variety which is found naturally in a number of plants and animals. It acts directly on the central nervous system (CNS) to decrease the feeling of pain. It can be taken for both acute pain and chronic pain. It is frequently used for pain from myocardial infarction and during labour. It can be given by mouth, by injection into a muscle, by injecting under the skin, intravenously, into the space around the spinal cord, or rectally. Maximum effect is around 20 minutes when given intravenously and 60 minutes when given by mouth, while duration of effect is 3–7 hours. Long-acting formulations also exist.

        Potentially serious side effects include a decreased respiratory effort and low blood pressure. Morphine has a high potential for addiction and abuse. If the dose is reduced after long-term use, withdrawal may occur. Common side effects include drowsiness, vomiting, and constipation. Caution is advised when used during pregnancy or breast feeding, as morphine will affect the baby.

        Morphine was first isolated between 1803 and 1805 by Friedrich Sertürner. This is generally believed to be the first isolation of an active ingredient from a plant. Merck began marketing it commercially in 1827. Morphine was more widely used after the invention of the hypodermic syringe in 1853–1855. Sertürner originally named the substance morphium after the Greek god of dreams, Morpheus, as it has a tendency to cause sleep.

        The primary source of morphine is isolation from poppy straw of the opium poppy. In 2013, approximately 523 tons of morphine were produced. Approximately 45 tons were used directly for pain, a four-time increase over the last twenty years. Most use for this purpose was in the developed world. About 70 percent of morphine is used to make other opioids such as hydromorphone, oxymorphone, and heroin. It is a Schedule II drug in the United States, Class A in the United Kingdom, and Schedule I in Canada. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. Morphine is sold under many trade names.

Medical uses:


        Two capsules (5 mg & 10 mg) of morphine sulfate

Pain:

        Morphine is used primarily to treat both acute and chronic severe pain. It is also used for pain due to myocardial infarction and for labor pains. Its duration of analgesia is about three to seven hours.

        However, concerns exist that morphine may increase mortality in the setting of non ST elevation myocardial infarction. Morphine has also traditionally been used in the treatment of acute pulmonary edema. A 2006 review, though, found little evidence to support this practice. A 2016 Cochrane review concluded that morphine is effective in relieving cancer pain. Side-effects of nausea and constipation are rarely severe enough to warrant stopping treatment.

Shortness of breath:

        Morphine is beneficial in reducing the symptom of shortness of breath due to both cancer and noncancer causes. In the setting of breathlessness at rest or on minimal exertion from conditions such as advanced cancer or end-stage cardiorespiratory diseases, regular, low-dose sustained-release morphine significantly reduces breathlessness safely, with its benefits maintained over time.

Opioid use disorder:

        Morphine is also available as a slow-release formulation for opiate substitution therapy (OST) in Austria, Bulgaria, and Slovenia, for addicts who cannot tolerate either methadone or buprenorphine.

Contraindications:

Relative contraindications to morphine include:

        Respiratory depression when appropriate equipment is not available

Although it has previously been thought that morphine was contraindicated in acute pancreatitis, a review of the literature shows no evidence for this.

Overdose:

        A large overdose can cause asphyxia and death by respiratory depression if the person does not receive medical attention immediately. Overdose treatment includes the administration of naloxone. The latter completely reverses morphine's effects, but may result in immediate onset of withdrawal in opiate-addicted subjects. Multiple doses may be needed.

        The minimum lethal dose of morphine sulfate is 120 mg, but in case of hypersensitivity, 60 mg can bring sudden death. In serious drug dependency (high tolerance), 2000–3000 mg per day can be tolerated.

Pharmacology:

Pharmacodynamics:

        Morphine is the prototypical opioid and is the standard against which other opioids are tested. It interacts predominantly with the μ–δ-opioid (Mu-Delta) receptor heteromer. The μ-binding sites are discretely distributed in the human brain, with high densities in the posterior amygdala, hypothalamus, thalamus, nucleus caudatus, putamen, and certain cortical areas. They are also found on the terminal axons of primary afferents within laminae I and II (substantia gelatinosa) of the spinal cord and in the spinal nucleus of the trigeminal nerve.

        Morphine is a phenanthrene opioid receptor agonist – its main effect is binding to and activating the μ-opioid receptors in the central nervous system. Its intrinsic activity at the μ-opioid is heavily dependent on the assay and tissue being tested; in some situations it is a full agonist while in others it can be a partial agonist or even antagonist. In clinical settings, morphine exerts its principal pharmacological effect on the central nervous system and gastrointestinal tract. Its primary actions of therapeutic value are analgesia and sedation. Activation of the μ-opioid receptors is associated with analgesia, sedation, euphoria, physical dependence, and respiratory depression. Morphine is also a κ-opioid and δ-opioid receptor agonist, κ-opioid's action is associated with spinal analgesia, miosis (pinpoint pupils) and psychotomimetic effects. δ-Opioid is thought to play a role in analgesia. Although morphine does not bind to the σ-receptor, it has been shown that σ-agonists, such as (+)-pentazocine, inhibit morphine analgesia, and σ-antagonists enhance morphine analgesia, suggesting downstream involvement of the σ-receptor in the actions of morphine.

        The effects of morphine can be countered with opioid antagonists such as naloxone and naltrexone; the development of tolerance to morphine may be inhibited by NMDA antagonists such as ketamine or dextromethorphan. The rotation of morphine with chemically dissimilar opioids in the long-term treatment of pain will slow down the growth of tolerance in the longer run, particularly agents known to have significantly incomplete cross-tolerance with morphine such as levorphanol, ketobemidone, piritramide, and methadone and its derivatives; all of these drugs also have NMDA antagonist properties. It is believed that the strong opioid with the most incomplete cross-tolerance with morphine is either methadone or dextromoramide.

Gene expression:

        Studies have shown that morphine can alter the expression of a number of genes. A single injection of morphine has been shown to alter the expression of two major groups of genes, for proteins involved in mitochondrial respiration and for cytoskeleton-related proteins.

Effects on the immune system:

        Morphine has long been known to act on receptors expressed on cells of the central nervous system resulting in pain relief and analgesia. In the 1970s and '80s, evidence suggesting that opioid drug addicts show increased risk of infection (such as increased pneumonia, tuberculosis, and HIV/AIDS) led scientists to believe that morphine may also affect the immune system. This possibility increased interest in the effect of chronic morphine use on the immune system.

        The first step of determining that morphine may affect the immune system was to establish that the opiate receptors known to be expressed on cells of the central nervous system are also expressed on cells of the immune system. One study successfully showed that dendritic cells, part of the innate immune system, display opiate receptors. Dendritic cells are responsible for producing cytokines, which are the tools for communication in the immune system. This same study showed that dendritic cells chronically treated with morphine during their differentiation produce more interleukin-12 (IL-12), a cytokine responsible for promoting the proliferation, growth, and differentiation of T-cells (another cell of the adaptive immune system) and less interleukin-10 (IL-10), a cytokine responsible for promoting a B-cell immune response (B cells produce antibodies to fight off infection).

        This regulation of cytokines appear to occur via the p38 MAPKs (mitogen-activated protein kinase)-dependent pathway. Usually, the p38 within the dendritic cell expresses TLR 4 (toll-like receptor 4), which is activated through the ligand LPS (lipopolysaccharide). This causes the p38 MAPK to be phosphorylated. This phosphorylation activates the p38 MAPK to begin producing IL-10 and IL-12. When the dendritic cells are chronically exposed to morphine during their differentiation process then treated with LPS, the production of cytokines is different. Once treated with morphine, the p38 MAPK does not produce IL-10, instead favoring production of IL-12. The exact mechanism through which the production of one cytokine is increased in favor over another is not known. Most likely, the morphine causes increased phosphorylation of the p38 MAPK. Transcriptional level interactions between IL-10 and IL-12 may further increase the production of IL-12 once IL-10 is not being produced. This increased production of IL-12 causes increased T-cell immune response.

        Further studies on the effects of morphine on the immune system have shown that morphine influences the production of neutrophils and other cytokines. Since cytokines are produced as part of the immediate immunological response (inflammation), it has been suggested that they may also influence pain. In this way, cytokines may be a logical target for analgesic development. Recently, one study has used an animal model (hind-paw incision) to observe the effects of morphine administration on the acute immunological response. Following hind-paw incision, pain thresholds and cytokine production were measured. Normally, cytokine production in and around the wounded area increases in order to fight infection and control healing (and, possibly, to control pain), but pre-incisional morphine administration (0.1 mg/kg to 10.0 mg/kg) reduced the number of cytokines found around the wound in a dose-dependent manner. The authors suggest that morphine administration in the acute post-injury period may reduce resistance to infection and may impair the healing of the wound.


Packing

Packing 1-4

Shipping

Shipping 1-4

Payment

Bitcoin;WU;MG;Bank

Purity

Pure

Appearance:

Conform

Date of delivery:

Within 48 hours when you finished the payment

Sales territory:

All over the world

Stock:

Enough

Transportation insurance:

Yes

Shipping origin:

HongKong

Synthesis of cycle:

2-7 days

Application range

Recreational Club Drugs;Chemistry Experimentpsychedelic ;Reagent and Other

Manufacturer:

Universal drugs Lab

Expiration date

5 Years



        We can provide Hallucinogens;Serotonin receptor modulators;Ergolines;Amphetamine;Anorectics;Decongestants;Monoamine releasing agents;Phenethylamines;Anxiolytics;Benzodiazepines;GABAA receptor positive modulators;Recreational drug;Club drugs;Euphoriants;Opioid receptor modulators;Analgesics;Stimulants;Monoamine neurotoxins;Serotonin receptor modulators;Sigma receptor modulators;Anticonvulsants;Antidotes;Glycine receptor modulators;Toxins;Globular proteins;chemical warfare and other chemical reagent .

       You can send message to us if you not see what you want product in our Web ,we will provide synthetic services for you.The synthesis time usually need 1-5 days.Wishing you a happy shopping.


Warm prompt:Please use it for chemical experiment,We are not liable for any legal liability.



Product Tags general anesthetics          list of general anesthetics          an example of a general anesthetic is          general anesthetic agents          mechanism of action of general anesthetics          general anesthetic drugs pharmacology          anesthetizer          an anesthetic          anesthetized         

INQUIRY

Contact us for all information about the product


click here to leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.